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Ion-Acoustic Wave in Relativistic Nonisothermal
Plasma with Negative Ions
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We study solitary wave formation in a nonisothermal plasma with negative ions.
When the ions are considered to be relativistic. The variations of the amplitude,
width, and the phase velocity are obtained explicitly with respect to the ratio of
the ion densities and the streaming velocity.

1. INTRODUCTION

The study of solitary waves occupies a central position in present-day
plasma research. During the last two or three decades various papers have
appeared dealing with different theoretical aspects of nonlinear plasma
theory. But some physical phenomena, such as relativistic effects and the
effect of a finite boundary, have gained importance only very recently. An
initial attempt to study relativistic effects in solitons was that of Das and
Paul (1985). Afterward other effects such as Landau damping (Roy
Chowdhury et al., 1988) and two-temperature effects (Roy Chowdhury es
al., 1990) were incorporated. The importance of relativistic effects were seen
in studies of laser plasma interactions and large-amplitude waves in
plasmas (Tsytovich, 1974; Bingham er al., 1990). On the other hand the
study of plasmas with negative ions is very important for the explanation
of many astrophysical and laboratory events (Das and Karmakar, 1990;
Tagare, 1986).

In this study we analyze the important situation of a relativistic
nonisothermal plasma in the presence of negative ions. Here both types of
ions are considered to be relativistic, one of which is negative, the mass
ratio being Q. After obtaining the modified KdV equation, we analyze the
variation of the amplitude and width of the solitary wave as a function of
the streaming velocities and the ratio of the ion densities.
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2. FORMULATION

As usual we assume that a hydrodynamic description is possible so
that the equations governing the plasma are
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where n,, ng, U,. U, are the densities and velocities for the two types of
ions. n, is the density of electrons,
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in the nonisothermal situation, and

— u2
U,= U“(1+252>
) U (7)
Uy Uy (1 +2—C€2>
We start by stretching the coordinates as
E=e"(x— 1)
T=¢e"% ®)
and set
Hy =MW+ en,, +&na, + - - -
ng=ngo+eng +e ng,+ - - -
Uy = Uy + Uy + U+ - - 9)

uB:uBo+8uﬂ1+83/2uﬁz+ e
p=s¢,+e P+ s+ - - -



Relativistic Nonisothermal Plasma 1467

where ¢ is a small parameter and these expansions satisfy the normalization
condition
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Now using equations (8) and (9) in (1)—(5), we obtain, by equating like
powers of ¢,
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whence we obtain the phase velocity as

2 12
/1=ua0i<’—119—z—@) (11)
e a yp

where

3u?, 3u?
_ 20, _ 2 Upo
ve=ltar vl aes

We now consider terms of higher order in &, which leads to the following
equations:
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Fig. 1. (A) Plot of the amplitude of the soliton against the ratio ng/n,. Fixed @ =6,
variable b, and fixed u,,=3 x 10°. (B) Plot of the amplitude of the soliton against the ratio
Hgo/nyo. Fixed Q =6, variable U,o/C, and fixed =0.1. (C) Plot of the amplitude of the
soliton against the ratio u,,/C. Fixed Q =6, fixed b =0.1, and variable ngy/n,,. (D) Plot of
the amplitude of the solution against the ratio ngy/n,o. Fixed u,q=3x 10°, fixed b=0.1, and
variable Q.
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Fig. 1. Continued.
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Fig. 2. (A) Plot of the width of the soliton against the ratio nge/n,o. Fixed Q =6, variable
U,o/C. (B) Plot of the width of the soliton against the ratio ngg/n,,. Fixed u,o=3x10°,
variable Q. (C) Plot of the width of the soliton against the ratio U,,/C. Fixed Q = 6, variable

nBO/an'
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Fig. 2. Continued.

So eliminating the second-order quantities in favor of first-order ones, we
get the modified KdV equation:
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Solitary Wave Solution

Equation (15) is known to possess a solitary wave solution written as

¢, = A% sech*(K& — wr) (17)
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Fig. 3. (A) Plot of the difference of the phase velocity and u,, of the soliton against the ratio
U,o/C. Fixed Q =6, variable ngy/n,q. (B) Plot of the difference of the phase velocity and U,
of the soliton against the ratio ngy/n,,. Fixed Q =6, variable U,q/C. (C) Plot of the difference
of the phase velocity and u,, of the soliton against the ratio ng,/n,,, variable Q.
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Fig. 3. Continued.

where

_ 15w
184K

So the amplitude is proportional to 4, and the width is given as 2(B/u)">.

Figures 1A-1D depict the variation of the amplitude for various values of
the streaming velocity and ratio of the ion densities. The width of the
solitary wave is plotted in Figs. 2A-2C, for the same range of values of the
parameters. Figures 3A-3C display the variation of the phase velocity. It is
interesting to note that such a behavior of the solitary wave is very much
possible in a nonisothermal plasma consisting of He* in the presence of
negative ions such as H™ or O; . A similar solution may occur in the case
of a mixture of He* and Nj .

3. DISCUSSION

We have shown how a solitary wave may evolve in a nonisothermal
plasma which is a mixture of positive and negative ions, with both ions
having sufficient energy to be relativistic. Such situations already prevail
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in space plasmas and are of utmost importance for astrophysical
considerations (Stenflo and Tsintsadze, 1979).
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